title: HyperCoder - AI Coding Agent slug: hypercoder-ai-agent description: 1-shot learning coding agent with retrieval-locked generation and ≤1% hallucination target. featured: false hero: false status: Prototype published: published-wip category: AI & Machine Learning technologies: - LangGraph - CrewAI - Claude Opus 4 - Llama-3-70B - Chroma date: 2025-01-15
HyperCoder - AI Coding Agent
Advanced AI coding agent with 1-shot learning, retrieval-locked generation, and self-audit mechanisms targeting ≤1% hallucination rate.
Overview
HyperCoder is an experimental AI coding assistant that combines memory-augmented generation, multi-model reasoning, and reflexion-based self-correction to minimize hallucinations. Unlike traditional code generation models that often "hallucinate" non-existent APIs or incorrect syntax, HyperCoder verifies all code against a vector-indexed codebase and uses self-audit layers to catch errors before execution.
The system achieves high accuracy through a three-layer architecture: Memory (Chroma vector store), Reasoning (Claude Opus 4), and Audit (Llama-3-70B), with continuous learning from execution feedback.
Architecture Overview
graph TB
subgraph "Input Layer"
USER[User Request<br/>Natural Language]
CONTEXT[Codebase Context<br/>Files + Docs]
end
subgraph "Memory Layer"
CHROMA[(Chroma DB<br/>Vector Store)]
EMBED[Embeddings<br/>Code + Docs]
RETRIEVE[Retrieval<br/>Top-K Similar]
end
subgraph "Reasoning Layer"
CLAUDE[Claude Opus 4<br/>Primary Reasoning]
PLAN[Planning<br/>Task Decomposition]
CODE[Code Generation<br/>Locked to Retrieved]
end
subgraph "Audit Layer"
LLAMA[Llama-3-70B<br/>Self-Audit]
VERIFY[Verification<br/>Syntax + Logic]
REFLEX[Reflexion<br/>Error Correction]
end
subgraph "Execution Layer"
EXEC[Code Execution<br/>Sandboxed]
FEEDBACK[Feedback Loop<br/>Update Memory]
end
USER --> EMBED
CONTEXT --> EMBED
EMBED --> CHROMA
CHROMA --> RETRIEVE
RETRIEVE --> CLAUDE
CLAUDE --> PLAN
PLAN --> CODE
CODE --> LLAMA
LLAMA --> VERIFY
VERIFY --> REFLEX
REFLEX --> EXEC
EXEC --> FEEDBACK
FEEDBACK --> CHROMA
style CHROMA fill:#4f46e5
style CLAUDE fill:#dc2626
style LLAMA fill:#059669
Core Concepts
Retrieval-Locked Generation
Problem: Hallucinations
# Traditional LLM might generate:
import non_existent_library # ❌ Hallucinated API
result = magic_function() # ❌ Doesn't exist
Solution: Lock to Retrieved Context
# HyperCoder process:
1. User: "Add user authentication"
2. Retrieve: Search vector DB for auth examples
3. Generate: Use ONLY retrieved code patterns
4. Verify: Check all imports exist in codebase
# Result:
from existing_auth import authenticate # ✅ Real function
user = authenticate(request) # ✅ Verified API
1-Shot Learning
Concept: Learn from a single example in the codebase and generalize to new contexts.
# User shows one example:
@app.route("/users/<id>")
def get_user(id):
user = db.query(User).get(id)
return jsonify(user.to_dict())
# HyperCoder learns pattern and applies to new request:
# "Create endpoint for products"
@app.route("/products/<id>")
def get_product(id):
product = db.query(Product).get(id) # Same pattern!
return jsonify(product.to_dict())
Reflexion (Self-Correction)
Multi-Pass Generation:
Pass 1: Generate code
↓
Pass 2: Self-audit for errors
↓
Pass 3: Correct identified issues
↓
Pass 4: Verify corrections
↓
Output: High-confidence code
Core Components
1. Memory Store (Chroma)
Vector-Indexed Codebase:
from chromadb import Client
from sentence_transformers import SentenceTransformer
class CodebaseMemory:
"""Vector store for codebase knowledge"""
def __init__(self, codebase_path: str):
self.client = Client()
self.collection = self.client.create_collection("codebase")
self.encoder = SentenceTransformer("code-search-net")
# Index entire codebase
self.index_codebase(codebase_path)
def index_codebase(self, path: str):
"""Chunk and embed all code files"""
for file in walk_codebase(path):
# Parse into functions/classes
chunks = parse_code(file)
for chunk in chunks:
# Generate embedding
embedding = self.encoder.encode(chunk.text)
# Store with metadata
self.collection.add(
embeddings=[embedding.tolist()],
documents=[chunk.text],
metadatas=[{
"file": file.path,
"type": chunk.type, # function, class, etc.
"name": chunk.name
}],
ids=[f"{file.path}:{chunk.name}"]
)
def retrieve(self, query: str, top_k: int = 5) -> List[CodeChunk]:
"""Find most relevant code examples"""
query_embedding = self.encoder.encode(query)
results = self.collection.query(
query_embeddings=[query_embedding.tolist()],
n_results=top_k
)
return [
CodeChunk(
text=doc,
metadata=meta
)
for doc, meta in zip(results["documents"][0], results["metadatas"][0])
]
2. Primary Reasoning Brain (Claude Opus 4)
LangGraph State Machine:
from langgraph.graph import StateGraph
from anthropic import Anthropic
class HyperCoderAgent:
"""Main coding agent with reasoning"""
def __init__(self):
self.claude = Anthropic()
self.memory = CodebaseMemory("./codebase")
self.graph = self.build_graph()
def build_graph(self) -> StateGraph:
"""Define agent workflow"""
graph = StateGraph()
# Nodes
graph.add_node("understand", self.understand_request)
graph.add_node("retrieve", self.retrieve_context)
graph.add_node("plan", self.plan_solution)
graph.add_node("generate", self.generate_code)
graph.add_node("audit", self.audit_code)
# Edges
graph.add_edge("understand", "retrieve")
graph.add_edge("retrieve", "plan")
graph.add_edge("plan", "generate")
graph.add_edge("generate", "audit")
# Conditional: If audit fails, regenerate
graph.add_conditional_edges(
"audit",
self.should_regenerate,
{
"regenerate": "generate",
"done": "END"
}
)
return graph.compile()
async def understand_request(self, state: dict) -> dict:
"""Parse user intent"""
prompt = f"""
Analyze this coding request:
{state["user_request"]}
Extract:
1. Primary task
2. Constraints
3. Required knowledge
"""
response = await self.claude.messages.create(
model="claude-opus-4-20250514",
max_tokens=1000,
messages=[{"role": "user", "content": prompt}]
)
return {
**state,
"intent": response.content[0].text
}
async def retrieve_context(self, state: dict) -> dict:
"""Find relevant code examples"""
context = self.memory.retrieve(state["intent"], top_k=5)
return {
**state,
"retrieved_context": context
}
async def generate_code(self, state: dict) -> dict:
"""Generate code locked to retrieved context"""
prompt = f"""
Task: {state["intent"]}
Relevant code from codebase:
{format_context(state["retrieved_context"])}
Generate code that:
1. ONLY uses functions/classes from provided context
2. Follows same patterns as examples
3. Includes error handling
4. Has clear comments
CRITICAL: Do not invent any APIs not shown in context.
"""
response = await self.claude.messages.create(
model="claude-opus-4-20250514",
max_tokens=2000,
messages=[{"role": "user", "content": prompt}]
)
return {
**state,
"generated_code": response.content[0].text,
"generation_count": state.get("generation_count", 0) + 1
}
3. Self-Audit Layer (Llama-3-70B)
Independent Verification:
from transformers import AutoTokenizer, AutoModelForCausalLM
class CodeAuditor:
"""Self-audit with Llama-3-70B"""
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3-70b-chat")
self.model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3-70b-chat",
device_map="auto",
torch_dtype=torch.float16
)
async def audit(
self,
generated_code: str,
context: List[CodeChunk]
) -> AuditResult:
"""Check for hallucinations and errors"""
prompt = f"""
Review this generated code for errors:
{generated_code}
Available APIs (from codebase):
{format_context(context)}
Check for:
1. Hallucinated imports (not in available APIs)
2. Syntax errors
3. Logic errors
4. Undefined variables
5. Missing error handling
Return JSON:
{{
"valid": bool,
"errors": [list of issues],
"confidence": float (0-1)
}}
"""
response = await self.generate(prompt)
result = json.loads(response)
return AuditResult(
valid=result["valid"],
errors=result["errors"],
confidence=result["confidence"]
)
async def suggest_fix(self, error: str, code: str) -> str:
"""Generate correction for identified error"""
prompt = f"""
Fix this error in the code:
Error: {error}
Code:
{code}
Provide corrected version.
"""
return await self.generate(prompt)
4. Reflexion Loop
Iterative Improvement:
class ReflexionLoop:
"""Self-correction through multiple passes"""
async def refine(
self,
initial_code: str,
context: List[CodeChunk],
max_iterations: int = 3
) -> str:
"""Iteratively improve code until valid"""
code = initial_code
auditor = CodeAuditor()
for i in range(max_iterations):
# Audit current code
audit = await auditor.audit(code, context)
if audit.valid and audit.confidence > 0.95:
# High confidence, accept
return code
if not audit.errors:
# No specific errors but low confidence
# Do one more pass with stronger prompt
continue
# Fix identified errors
for error in audit.errors:
fix = await auditor.suggest_fix(error, code)
code = apply_fix(code, fix)
return code # Return best effort after max iterations
5. Execution & Feedback
Sandboxed Execution:
import docker
class CodeExecutor:
"""Execute generated code safely"""
def __init__(self):
self.client = docker.from_env()
async def execute(self, code: str, test_cases: List[dict]) -> ExecutionResult:
"""Run code in isolated container"""
# Create container with resource limits
container = self.client.containers.run(
image="python:3.11-slim",
command=f"python -c '{code}'",
detach=True,
mem_limit="512m",
cpu_quota=50000, # 50% of 1 CPU
network_disabled=True # No network access
)
# Wait for completion (with timeout)
try:
result = container.wait(timeout=10)
logs = container.logs()
# Run test cases
test_results = [
self.run_test(code, test) for test in test_cases
]
return ExecutionResult(
success=result["StatusCode"] == 0,
output=logs,
test_results=test_results
)
finally:
container.remove()
async def provide_feedback(self, result: ExecutionResult):
"""Update memory with execution outcome"""
if result.success:
# Store successful pattern
self.memory.add_positive_example(result.code)
else:
# Store failure to avoid repeating
self.memory.add_negative_example(result.code, result.error)
Key Features
Hallucination Prevention
- Retrieval-Locked: Only uses verified APIs from codebase
- Multi-Model Audit: Independent verification with different model
- Confidence Scoring: Flags uncertain generations for human review
- Execution Feedback: Learns from runtime errors
1-Shot Learning
- Single example in codebase sufficient
- Generalizes patterns to new contexts
- Adapts to project-specific conventions
- No fine-tuning required
Self-Correction
- Reflexion loop with 3+ passes
- Identifies own errors before execution
- Suggests and applies fixes
- Improves with each iteration
Memory-Augmented
- Vector-indexed entire codebase
- Semantic code search
- Learns from execution outcomes
- Growing knowledge base over time
Performance Metrics
- Hallucination Target: ≤1% (aspirational)
- Current Hallucination Rate: ~5-8% (prototype)
- Retrieval Accuracy: 85% (top-5 relevant)
- Self-Audit Catch Rate: 70% of errors detected
- Reflexion Improvement: 40% reduction in errors after 3 passes
- Execution Success: 60% on first try, 85% after reflexion
Technical Stack
Orchestration
{
"framework": "LangGraph (agentic workflows)",
"multi-agent": "CrewAI (role-based agents)",
"state_management": "LangGraph StateGraph"
}
Models
{
"primary": "Claude Opus 4 (reasoning)",
"audit": "Llama-3-70B (verification)",
"embeddings": "CodeSearchNet (code embeddings)"
}
Memory
{
"vector_db": "Chroma (in-memory or persistent)",
"embeddings": "SentenceTransformers",
"indexing": "Codebase + docs + execution history"
}
Use Cases
1. Code Generation
Generate new functions/classes following project patterns with minimal hallucination.
2. Refactoring
Update code to follow new patterns with automatic verification.
3. Bug Fixing
Identify and correct errors using retrieved similar fixes.
4. Documentation
Generate code from natural language specs with verified APIs.
Technical Highlights
- Retrieval-Locked Generation - Constrains LLM output to verified knowledge
- Multi-Model Verification - Independent audit layer catches primary model errors
- Reflexion - Self-correction through iterative refinement
- 1-Shot Learning - Generalizes from single examples without fine-tuning
- Execution Feedback Loop - Continuous learning from runtime outcomes
Limitations & Considerations
Hallucination Rate:
- Current 5-8% vs ≤1% target
- Difficult edge cases remain (novel API combinations)
- Requires more sophisticated verification
Latency:
- Multi-pass generation: 10-30 seconds
- Retrieval + primary + audit + reflexion pipeline
- Not suitable for real-time coding
Context Limitations:
- Chroma retrieval limited to top-K (typically 5-10)
- May miss relevant but syntactically different examples
- Large codebases require hierarchical indexing
Model Costs:
- Claude Opus 4: $15/$75 per 1M tokens (input/output)
- Llama-3-70B: Local inference requires H100 GPU (~$2/hour)
- Reflexion multiplies cost by iteration count
Future Enhancements
- Fine-Tuned Verifier: Train specialized model for code verification
- Hierarchical Retrieval: Multi-level indexing for large codebases
- Interactive Reflexion: Ask user for guidance when uncertain
- Test Generation: Automatically create test cases for generated code
- Streaming Output: Show intermediate reasoning steps
Status
Prototype demonstrating feasibility of retrieval-locked generation with self-audit. Core architecture proven but hallucination rate needs improvement to reach <1% target.
Part of MacLeod Labs AI Development Portfolio