title: ASEAN Cloud Transformation slug: asean-cloud-transformation description: Large-scale cloud transformation programs for major ASEAN enterprises including DBS, HSBC, Standard Chartered. featured: false hero: false status: Project published: published category: Enterprise Solutions technologies: - AWS - DevOps - Microservices - Big Data - Kubernetes date: 2025-01-15
ASEAN Cloud Transformation
Large-scale cloud transformation consulting engagement (2017-2020) for 10+ major financial institutions and enterprises across ASEAN, including DBS Bank, HSBC, Standard Chartered, and Singapore Exchange (SGX).
Overview
Led cloud transformation programs for major ASEAN enterprises over a 3-year period, architecting and implementing AWS-based platforms that modernized legacy infrastructure, enabled DevOps practices, and built enterprise microservices capabilities. Projects ranged from complete cloud migrations to building cloud-native platforms for digital banking and financial services.
Engagement involved architecture design, platform engineering, DevOps automation, team training, and delivery of production-grade systems serving millions of users across Singapore, Hong Kong, Malaysia, and Thailand.
Program Overview
graph TB
subgraph "Financial Services Clients"
DBS[DBS Bank<br/>Digital Banking Platform]
HSBC[HSBC<br/>Private Banking Cloud]
SC[Standard Chartered<br/>Microservices Platform]
SGX[Singapore Exchange<br/>Market Data Platform]
OTHER[6+ Other Institutions<br/>Various Projects]
end
subgraph "Transformation Phases"
ASSESS[Assessment<br/>Legacy Analysis]
ARCH[Architecture Design<br/>Target State]
PILOT[Pilot Projects<br/>Proof of Value]
SCALE[Scale Deployment<br/>Production Migration]
OPERATE[Operating Model<br/>DevOps Enablement]
end
subgraph "Platform Capabilities"
INFRA[Infrastructure<br/>Multi-Region AWS]
DEVOPS[DevOps<br/>CI/CD Automation]
MICRO[Microservices<br/>Service Mesh]
DATA[Big Data<br/>Analytics Pipelines]
SEC[Security<br/>Compliance]
end
DBS --> ASSESS
HSBC --> ASSESS
SC --> ASSESS
SGX --> ASSESS
OTHER --> ASSESS
ASSESS --> ARCH
ARCH --> PILOT
PILOT --> SCALE
SCALE --> OPERATE
OPERATE --> INFRA
OPERATE --> DEVOPS
OPERATE --> MICRO
OPERATE --> DATA
OPERATE --> SEC
style ARCH fill:#4f46e5
style DEVOPS fill:#dc2626
style MICRO fill:#059669
Key Client Engagements
1. DBS Bank - Digital Banking Platform
Client: DBS Bank (SE Asia's largest bank, $500B+ assets)
Challenge:
- Legacy monolithic banking systems (mainframe + Oracle)
- 6-12 month release cycles
- Limited scalability for digital banking growth
- Regulatory compliance requirements (MAS, BSP, etc.)
Solution:
Cloud-Native Digital Banking Platform:
├─ Multi-Region AWS Architecture
│ ├─ Primary: Singapore (ap-southeast-1)
│ ├─ DR: Hong Kong (ap-east-1)
│ └─ Edge: CloudFront for static assets
│
├─ Microservices on Kubernetes
│ ├─ EKS clusters (dev, staging, prod)
│ ├─ Service mesh (Istio) for observability
│ ├─ 100+ microservices (accounts, payments, etc.)
│ └─ Event-driven (Kafka + SNS/SQS)
│
├─ DevOps Automation
│ ├─ GitLab CI/CD pipelines
│ ├─ Infrastructure as Code (Terraform)
│ ├─ Automated testing (unit, integration, E2E)
│ └─ Blue-green deployments
│
└─ Security & Compliance
├─ AWS IAM + Cognito
├─ Secrets Manager for credentials
├─ CloudTrail audit logging
└─ MAS compliance controls
Outcomes:
- Deployment Frequency: 6 months → daily releases
- Time to Market: 75% reduction for new features
- Scalability: Handled 10x traffic growth (digital banking surge)
- Cost: 40% infrastructure cost reduction vs on-prem
2. HSBC - Private Banking Cloud Platform
Client: HSBC Private Bank (wealth management for UHNW clients)
Challenge:
- Siloed on-premise infrastructure across countries
- Manual provisioning (weeks per environment)
- Inconsistent security policies
- High operational costs
Solution:
Unified Private Banking Cloud:
├─ Multi-Account AWS Strategy
│ ├─ Shared Services (networking, security)
│ ├─ Country Accounts (SG, HK, MY, TH)
│ ├─ Sandbox (developer experimentation)
│ └─ AWS Organizations + SCPs
│
├─ Self-Service Developer Platform
│ ├─ Service catalog (pre-approved patterns)
│ ├─ Automated provisioning (CloudFormation)
│ ├─ Golden AMIs (hardened images)
│ └─ Cost allocation tags
│
├─ Network Architecture
│ ├─ Transit Gateway (hub-and-spoke)
│ ├─ Direct Connect to on-prem
│ ├─ VPN for branch connectivity
│ └─ WAF + Shield for DDoS protection
│
└─ Compliance & Governance
├─ AWS Config rules
├─ GuardDuty threat detection
├─ Security Hub dashboards
└─ Automated compliance reports
Outcomes:
- Provisioning Speed: Weeks → 30 minutes (automated)
- Cost Visibility: 100% cost allocation by project/country
- Security Posture: Centralized controls, consistent policies
- Developer Velocity: 5x faster environment setup
3. Standard Chartered - Enterprise Microservices Platform
Client: Standard Chartered Bank (global banking, 59 countries)
Challenge:
- Monolithic applications (20+ years old)
- Tight coupling between systems
- Difficult to scale individual components
- Technology debt (Java EE, Oracle SOA)
Solution:
Microservices Migration Platform:
├─ API Gateway Layer
│ ├─ AWS API Gateway (public APIs)
│ ├─ Internal ALBs (private APIs)
│ ├─ OAuth 2.0 authentication
│ └─ Rate limiting + throttling
│
├─ Service Mesh (Istio)
│ ├─ Traffic management (canary, A/B)
│ ├─ Observability (metrics, traces, logs)
│ ├─ Security (mTLS between services)
│ └─ Circuit breakers + retries
│
├─ Container Platform
│ ├─ EKS (Kubernetes) multi-cluster
│ ├─ Fargate for serverless workloads
│ ├─ ECR for container registry
│ └─ Auto-scaling (HPA + Cluster Autoscaler)
│
└─ Data Mesh Architecture
├─ Event bus (Kafka on MSK)
├─ Stream processing (Kinesis)
├─ Data lake (S3 + Glue + Athena)
└─ Real-time analytics (Elasticsearch)
Outcomes:
- Decomposition: 3 monoliths → 200+ microservices (2 years)
- Deployment Independence: Teams deploy without coordination
- Scalability: Per-service auto-scaling (cost-efficient)
- Resilience: Circuit breakers prevent cascading failures
4. Singapore Exchange (SGX) - Market Data Platform
Client: Singapore Exchange (national stock/derivatives exchange)
Challenge:
- Legacy market data systems (1990s era)
- Limited throughput (10k messages/second)
- High latency (50-100ms)
- Difficult to add new data sources
Solution:
Real-Time Market Data Platform:
├─ High-Throughput Ingestion
│ ├─ Kinesis Data Streams (1M+ records/sec)
│ ├─ MSK (Managed Kafka) for pub/sub
│ ├─ Lambda for ETL processing
│ └─ Direct Connect (low latency feed)
│
├─ Storage & Analytics
│ ├─ S3 (data lake, compressed Parquet)
│ ├─ Redshift (data warehouse)
│ ├─ DynamoDB (real-time quotes)
│ └─ ElastiCache (sub-ms queries)
│
├─ Distribution
│ ├─ CloudFront (global CDN)
│ ├─ API Gateway (WebSocket APIs)
│ ├─ AppSync (GraphQL subscriptions)
│ └─ Direct feeds to institutional clients
│
└─ Monitoring & Alerting
├─ CloudWatch (metrics + dashboards)
├─ X-Ray (distributed tracing)
├─ SNS (alert notifications)
└─ Grafana (custom visualizations)
Outcomes:
- Throughput: 10k → 1M+ messages/second (100x)
- Latency: 50-100ms → 5-10ms (10x improvement)
- Availability: 99.9% → 99.99% (4-nines SLA)
- New Data Sources: 6 months → 1 week to integrate
Common Architecture Patterns
Multi-Region AWS Foundation
Typical Setup:
Production:
├─ Region 1 (Primary): ap-southeast-1 (Singapore)
│ ├─ VPC (10.0.0.0/16)
│ ├─ Availability Zones: 3
│ ├─ Subnets: Public, Private, Data
│ └─ NAT Gateways: 3 (HA)
│
├─ Region 2 (DR): ap-east-1 (Hong Kong)
│ ├─ VPC (10.1.0.0/16)
│ ├─ Availability Zones: 3
│ ├─ Standby: Warm/cold depending on RTO
│ └─ Data replication: RDS, S3, DynamoDB
│
└─ Global Services
├─ Route 53 (DNS, health checks, failover)
├─ CloudFront (CDN, WAF)
├─ IAM (centralized auth)
└─ S3 (cross-region replication)
DevOps Automation Pipeline
CI/CD Pattern:
Developer Workflow:
1. Code → Git push → GitLab/GitHub
2. CI Pipeline:
├─ Build (Docker image)
├─ Unit tests (Jest, PyTest)
├─ SAST (SonarQube, Snyk)
├─ Push to ECR
└─ Trigger CD
3. CD Pipeline:
├─ Deploy to dev (auto)
├─ Integration tests
├─ Deploy to staging (auto)
├─ Smoke tests
├─ Manual approval gate
├─ Deploy to prod (blue-green)
└─ Automated rollback if errors
Tools:
- Source Control: GitLab, GitHub Enterprise
- CI/CD: GitLab CI, Jenkins, AWS CodePipeline
- IaC: Terraform, CloudFormation, CDK
- Config Management: Ansible, Chef
- Monitoring: CloudWatch, Prometheus, Grafana, ELK
Microservices Platform
Core Components:
Service Architecture:
├─ API Gateway (traffic ingress)
├─ Service Mesh (Istio/Linkerd)
│ ├─ mTLS (service-to-service auth)
│ ├─ Traffic routing (canary, A/B)
│ ├─ Observability (metrics, traces)
│ └─ Resilience (retries, circuit breakers)
├─ Container Orchestration (EKS)
│ ├─ Deployments (rolling updates)
│ ├─ Services (internal load balancing)
│ ├─ ConfigMaps/Secrets (config)
│ └─ Auto-scaling (HPA, VPA, CA)
├─ Service Registry (Consul, AWS Cloud Map)
├─ Event Bus (Kafka, SNS/SQS)
└─ Observability Stack
├─ Logging (Fluentd → ELK)
├─ Metrics (Prometheus → Grafana)
├─ Tracing (Jaeger, X-Ray)
└─ Dashboards (Grafana, Kibana)
Security & Compliance
Layered Security:
Defense in Depth:
├─ Network Layer
│ ├─ VPC isolation
│ ├─ Security groups (stateful firewall)
│ ├─ NACLs (stateless firewall)
│ └─ WAF (application firewall)
├─ Identity Layer
│ ├─ IAM roles (least privilege)
│ ├─ MFA enforcement
│ ├─ Cognito (user auth)
│ └─ SAML/OIDC federation
├─ Data Layer
│ ├─ Encryption at rest (KMS)
│ ├─ Encryption in transit (TLS 1.2+)
│ ├─ Secrets Manager (credentials)
│ └─ S3 bucket policies
├─ Application Layer
│ ├─ SAST (static code analysis)
│ ├─ DAST (runtime scanning)
│ ├─ SCA (dependency scanning)
│ └─ Container scanning (Aqua, Snyk)
└─ Compliance Layer
├─ AWS Config (compliance rules)
├─ GuardDuty (threat detection)
├─ CloudTrail (audit logs)
└─ Security Hub (centralized view)
Technical Highlights
Scale Achievements
- Users Served: 10M+ across banking applications
- Transaction Volume: 100M+ transactions/month
- Data Processed: 10TB+/day (market data, analytics)
- Services Deployed: 500+ microservices across clients
Cost Optimization
- Reserved Instances: 40-60% cost savings for baseline compute
- Spot Instances: 70-90% savings for batch workloads
- Auto-Scaling: 30-50% reduction by scaling to demand
- S3 Lifecycle: 50-70% storage cost reduction (tiering to Glacier)
Performance Improvements
- Latency: 50-100ms → 5-20ms (typical)
- Throughput: 10-100x improvements via horizontal scaling
- Availability: 99.9% → 99.99% (multi-AZ + auto-recovery)
- Deployment Frequency: Months → daily/weekly
DevOps Transformation
- Lead Time: 6 months → 1-2 weeks (feature to production)
- MTTR: Hours → minutes (automated recovery)
- Change Failure Rate: 20% → <5% (automated testing)
- Deployment Frequency: Quarterly → daily
Technologies Used
AWS Services
Core:
├─ Compute: EC2, ECS, EKS, Lambda, Fargate
├─ Storage: S3, EBS, EFS, Glacier
├─ Database: RDS (PostgreSQL, MySQL), DynamoDB, ElastiCache
├─ Networking: VPC, ALB, NLB, API Gateway, CloudFront
├─ Security: IAM, Cognito, KMS, Secrets Manager, WAF
└─ Management: CloudFormation, CloudWatch, Systems Manager
Data & Analytics:
├─ Streaming: Kinesis, MSK (Kafka)
├─ ETL: Glue, EMR, Data Pipeline
├─ Warehousing: Redshift, Athena
├─ Analytics: QuickSight, Elasticsearch
└─ ML: SageMaker
Developer Tools:
├─ Source: CodeCommit (or GitLab/GitHub)
├─ Build: CodeBuild (or Jenkins)
├─ Deploy: CodeDeploy, CodePipeline
└─ Container: ECR
Open Source Stack
Orchestration:
├─ Kubernetes (EKS)
├─ Docker
├─ Terraform
└─ Ansible
Service Mesh:
├─ Istio
├─ Linkerd
└─ Consul
Observability:
├─ Prometheus (metrics)
├─ Grafana (visualization)
├─ ELK Stack (logs)
├─ Jaeger (distributed tracing)
└─ Fluentd (log aggregation)
Messaging:
├─ Kafka (MSK)
├─ RabbitMQ
└─ Redis
Engagement Structure
Team Composition
Typical Project Team (10-15 people):
├─ Cloud Architect (1-2)
├─ Platform Engineers (3-4)
├─ DevOps Engineers (2-3)
├─ Security Engineer (1)
├─ Data Engineer (1-2)
└─ Technical Lead (1)
Client Collaboration:
├─ Application Teams (10-50)
├─ Operations Team (5-10)
├─ Security Team (2-5)
└─ Management Stakeholders
Engagement Phases
Typical 12-18 Month Program:
├─ Phase 1: Assessment (1-2 months)
│ ├─ Current state analysis
│ ├─ Target architecture design
│ └─ Business case & roadmap
├─ Phase 2: Foundation (2-3 months)
│ ├─ AWS account setup
│ ├─ Landing zone (multi-account)
│ ├─ Networking (VPCs, Direct Connect)
│ └─ Security baseline
├─ Phase 3: Pilot (3-4 months)
│ ├─ 1-2 pilot applications
│ ├─ DevOps pipeline setup
│ ├─ Training & knowledge transfer
│ └─ Proof of value
├─ Phase 4: Scale (4-6 months)
│ ├─ Migration of applications
│ ├─ Platform enhancement
│ ├─ Team enablement
│ └─ Operational playbooks
└─ Phase 5: Operate (ongoing)
├─ DevOps operating model
├─ Site reliability engineering
├─ Cost optimization
└─ Continuous improvement
Outcomes Summary
Business Impact
- Time to Market: 50-75% reduction for new features
- Infrastructure Costs: 30-50% reduction vs on-premise
- Operational Efficiency: 60-80% reduction in manual tasks
- Developer Productivity: 3-5x improvement (self-service)
Technical Achievements
- 10+ Major Clients: DBS, HSBC, Standard Chartered, SGX, others
- 3 Year Tenure: 2017-2020
- 100+ Applications Migrated: To AWS cloud
- 500+ Microservices: Deployed across clients
- 99.99% Availability: For mission-critical systems
Knowledge Transfer
- Training Programs: 200+ engineers trained on AWS/DevOps
- Documentation: 1000+ pages of architecture docs
- Playbooks: Operational runbooks for 50+ scenarios
- CoE Establishment: Centers of Excellence for cloud at clients
Lessons Learned
Success Factors
- Executive Sponsorship: Critical for organizational change
- Pilot First: Prove value before full-scale migration
- Team Training: Invest heavily in upskilling client teams
- Automation: Infrastructure as Code from day one
- Security by Design: Build compliance into platform
Challenges Overcome
- Legacy Integration: Hybrid cloud patterns for mainframe connectivity
- Regulatory Compliance: MAS, BSP, HKMA requirements in cloud
- Cultural Change: DevOps mindset shift in traditional banks
- Skill Gaps: Extensive training programs required
- Vendor Lock-in Concerns: Multi-cloud strategy discussions
Status
Completed project (2017-2020) delivering cloud transformation for 10+ major ASEAN enterprises. Established cloud platforms, DevOps practices, and microservices architectures that continue to power digital banking and financial services.
Part of MacLeod Labs Enterprise Cloud Platform Portfolio